\(\int \frac {(a+b x^2+c x^4)^{3/2}}{x^2} \, dx\) [950]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [A] (verified)
   Fricas [F]
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 20, antiderivative size = 361 \[ \int \frac {\left (a+b x^2+c x^4\right )^{3/2}}{x^2} \, dx=\frac {\left (b^2+12 a c\right ) x \sqrt {a+b x^2+c x^4}}{5 \sqrt {c} \left (\sqrt {a}+\sqrt {c} x^2\right )}+\frac {1}{5} x \left (7 b+6 c x^2\right ) \sqrt {a+b x^2+c x^4}-\frac {\left (a+b x^2+c x^4\right )^{3/2}}{x}-\frac {\sqrt [4]{a} \left (b^2+12 a c\right ) \left (\sqrt {a}+\sqrt {c} x^2\right ) \sqrt {\frac {a+b x^2+c x^4}{\left (\sqrt {a}+\sqrt {c} x^2\right )^2}} E\left (2 \arctan \left (\frac {\sqrt [4]{c} x}{\sqrt [4]{a}}\right )|\frac {1}{4} \left (2-\frac {b}{\sqrt {a} \sqrt {c}}\right )\right )}{5 c^{3/4} \sqrt {a+b x^2+c x^4}}+\frac {\sqrt [4]{a} \left (b^2+8 \sqrt {a} b \sqrt {c}+12 a c\right ) \left (\sqrt {a}+\sqrt {c} x^2\right ) \sqrt {\frac {a+b x^2+c x^4}{\left (\sqrt {a}+\sqrt {c} x^2\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{c} x}{\sqrt [4]{a}}\right ),\frac {1}{4} \left (2-\frac {b}{\sqrt {a} \sqrt {c}}\right )\right )}{10 c^{3/4} \sqrt {a+b x^2+c x^4}} \]

[Out]

-(c*x^4+b*x^2+a)^(3/2)/x+1/5*x*(6*c*x^2+7*b)*(c*x^4+b*x^2+a)^(1/2)+1/5*(12*a*c+b^2)*x*(c*x^4+b*x^2+a)^(1/2)/c^
(1/2)/(a^(1/2)+x^2*c^(1/2))-1/5*a^(1/4)*(12*a*c+b^2)*(cos(2*arctan(c^(1/4)*x/a^(1/4)))^2)^(1/2)/cos(2*arctan(c
^(1/4)*x/a^(1/4)))*EllipticE(sin(2*arctan(c^(1/4)*x/a^(1/4))),1/2*(2-b/a^(1/2)/c^(1/2))^(1/2))*(a^(1/2)+x^2*c^
(1/2))*((c*x^4+b*x^2+a)/(a^(1/2)+x^2*c^(1/2))^2)^(1/2)/c^(3/4)/(c*x^4+b*x^2+a)^(1/2)+1/10*a^(1/4)*(cos(2*arcta
n(c^(1/4)*x/a^(1/4)))^2)^(1/2)/cos(2*arctan(c^(1/4)*x/a^(1/4)))*EllipticF(sin(2*arctan(c^(1/4)*x/a^(1/4))),1/2
*(2-b/a^(1/2)/c^(1/2))^(1/2))*(a^(1/2)+x^2*c^(1/2))*(b^2+12*a*c+8*b*a^(1/2)*c^(1/2))*((c*x^4+b*x^2+a)/(a^(1/2)
+x^2*c^(1/2))^2)^(1/2)/c^(3/4)/(c*x^4+b*x^2+a)^(1/2)

Rubi [A] (verified)

Time = 0.12 (sec) , antiderivative size = 361, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.250, Rules used = {1131, 1190, 1211, 1117, 1209} \[ \int \frac {\left (a+b x^2+c x^4\right )^{3/2}}{x^2} \, dx=\frac {\sqrt [4]{a} \left (8 \sqrt {a} b \sqrt {c}+12 a c+b^2\right ) \left (\sqrt {a}+\sqrt {c} x^2\right ) \sqrt {\frac {a+b x^2+c x^4}{\left (\sqrt {a}+\sqrt {c} x^2\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{c} x}{\sqrt [4]{a}}\right ),\frac {1}{4} \left (2-\frac {b}{\sqrt {a} \sqrt {c}}\right )\right )}{10 c^{3/4} \sqrt {a+b x^2+c x^4}}-\frac {\sqrt [4]{a} \left (12 a c+b^2\right ) \left (\sqrt {a}+\sqrt {c} x^2\right ) \sqrt {\frac {a+b x^2+c x^4}{\left (\sqrt {a}+\sqrt {c} x^2\right )^2}} E\left (2 \arctan \left (\frac {\sqrt [4]{c} x}{\sqrt [4]{a}}\right )|\frac {1}{4} \left (2-\frac {b}{\sqrt {a} \sqrt {c}}\right )\right )}{5 c^{3/4} \sqrt {a+b x^2+c x^4}}+\frac {x \left (12 a c+b^2\right ) \sqrt {a+b x^2+c x^4}}{5 \sqrt {c} \left (\sqrt {a}+\sqrt {c} x^2\right )}-\frac {\left (a+b x^2+c x^4\right )^{3/2}}{x}+\frac {1}{5} x \left (7 b+6 c x^2\right ) \sqrt {a+b x^2+c x^4} \]

[In]

Int[(a + b*x^2 + c*x^4)^(3/2)/x^2,x]

[Out]

((b^2 + 12*a*c)*x*Sqrt[a + b*x^2 + c*x^4])/(5*Sqrt[c]*(Sqrt[a] + Sqrt[c]*x^2)) + (x*(7*b + 6*c*x^2)*Sqrt[a + b
*x^2 + c*x^4])/5 - (a + b*x^2 + c*x^4)^(3/2)/x - (a^(1/4)*(b^2 + 12*a*c)*(Sqrt[a] + Sqrt[c]*x^2)*Sqrt[(a + b*x
^2 + c*x^4)/(Sqrt[a] + Sqrt[c]*x^2)^2]*EllipticE[2*ArcTan[(c^(1/4)*x)/a^(1/4)], (2 - b/(Sqrt[a]*Sqrt[c]))/4])/
(5*c^(3/4)*Sqrt[a + b*x^2 + c*x^4]) + (a^(1/4)*(b^2 + 8*Sqrt[a]*b*Sqrt[c] + 12*a*c)*(Sqrt[a] + Sqrt[c]*x^2)*Sq
rt[(a + b*x^2 + c*x^4)/(Sqrt[a] + Sqrt[c]*x^2)^2]*EllipticF[2*ArcTan[(c^(1/4)*x)/a^(1/4)], (2 - b/(Sqrt[a]*Sqr
t[c]))/4])/(10*c^(3/4)*Sqrt[a + b*x^2 + c*x^4])

Rule 1117

Int[1/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c/a, 4]}, Simp[(1 + q^2*x^2)*(Sqrt[(
a + b*x^2 + c*x^4)/(a*(1 + q^2*x^2)^2)]/(2*q*Sqrt[a + b*x^2 + c*x^4]))*EllipticF[2*ArcTan[q*x], 1/2 - b*(q^2/(
4*c))], x]] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0] && PosQ[c/a]

Rule 1131

Int[((d_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Simp[(d*x)^(m + 1)*((a + b*x^2
+ c*x^4)^p/(d*(m + 1))), x] - Dist[2*(p/(d^2*(m + 1))), Int[(d*x)^(m + 2)*(b + 2*c*x^2)*(a + b*x^2 + c*x^4)^(p
 - 1), x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b^2 - 4*a*c, 0] && GtQ[p, 0] && LtQ[m, -1] && IntegerQ[2*p] &&
(IntegerQ[p] || IntegerQ[m])

Rule 1190

Int[((d_) + (e_.)*(x_)^2)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Simp[x*(2*b*e*p + c*d*(4*p +
 3) + c*e*(4*p + 1)*x^2)*((a + b*x^2 + c*x^4)^p/(c*(4*p + 1)*(4*p + 3))), x] + Dist[2*(p/(c*(4*p + 1)*(4*p + 3
))), Int[Simp[2*a*c*d*(4*p + 3) - a*b*e + (2*a*c*e*(4*p + 1) + b*c*d*(4*p + 3) - b^2*e*(2*p + 1))*x^2, x]*(a +
 b*x^2 + c*x^4)^(p - 1), x], x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e
^2, 0] && GtQ[p, 0] && FractionQ[p] && IntegerQ[2*p]

Rule 1209

Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c/a, 4]}, Simp[(
-d)*x*(Sqrt[a + b*x^2 + c*x^4]/(a*(1 + q^2*x^2))), x] + Simp[d*(1 + q^2*x^2)*(Sqrt[(a + b*x^2 + c*x^4)/(a*(1 +
 q^2*x^2)^2)]/(q*Sqrt[a + b*x^2 + c*x^4]))*EllipticE[2*ArcTan[q*x], 1/2 - b*(q^2/(4*c))], x] /; EqQ[e + d*q^2,
 0]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && PosQ[c/a]

Rule 1211

Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c/a, 2]}, Dist[(
e + d*q)/q, Int[1/Sqrt[a + b*x^2 + c*x^4], x], x] - Dist[e/q, Int[(1 - q*x^2)/Sqrt[a + b*x^2 + c*x^4], x], x]
/; NeQ[e + d*q, 0]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && PosQ[c/a]

Rubi steps \begin{align*} \text {integral}& = -\frac {\left (a+b x^2+c x^4\right )^{3/2}}{x}+3 \int \left (b+2 c x^2\right ) \sqrt {a+b x^2+c x^4} \, dx \\ & = \frac {1}{5} x \left (7 b+6 c x^2\right ) \sqrt {a+b x^2+c x^4}-\frac {\left (a+b x^2+c x^4\right )^{3/2}}{x}+\frac {\int \frac {8 a b c+c \left (b^2+12 a c\right ) x^2}{\sqrt {a+b x^2+c x^4}} \, dx}{5 c} \\ & = \frac {1}{5} x \left (7 b+6 c x^2\right ) \sqrt {a+b x^2+c x^4}-\frac {\left (a+b x^2+c x^4\right )^{3/2}}{x}-\frac {\left (\sqrt {a} \left (b^2+12 a c\right )\right ) \int \frac {1-\frac {\sqrt {c} x^2}{\sqrt {a}}}{\sqrt {a+b x^2+c x^4}} \, dx}{5 \sqrt {c}}+\frac {\left (\sqrt {a} \left (b^2+8 \sqrt {a} b \sqrt {c}+12 a c\right )\right ) \int \frac {1}{\sqrt {a+b x^2+c x^4}} \, dx}{5 \sqrt {c}} \\ & = \frac {\left (b^2+12 a c\right ) x \sqrt {a+b x^2+c x^4}}{5 \sqrt {c} \left (\sqrt {a}+\sqrt {c} x^2\right )}+\frac {1}{5} x \left (7 b+6 c x^2\right ) \sqrt {a+b x^2+c x^4}-\frac {\left (a+b x^2+c x^4\right )^{3/2}}{x}-\frac {\sqrt [4]{a} \left (b^2+12 a c\right ) \left (\sqrt {a}+\sqrt {c} x^2\right ) \sqrt {\frac {a+b x^2+c x^4}{\left (\sqrt {a}+\sqrt {c} x^2\right )^2}} E\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{c} x}{\sqrt [4]{a}}\right )|\frac {1}{4} \left (2-\frac {b}{\sqrt {a} \sqrt {c}}\right )\right )}{5 c^{3/4} \sqrt {a+b x^2+c x^4}}+\frac {\sqrt [4]{a} \left (b^2+8 \sqrt {a} b \sqrt {c}+12 a c\right ) \left (\sqrt {a}+\sqrt {c} x^2\right ) \sqrt {\frac {a+b x^2+c x^4}{\left (\sqrt {a}+\sqrt {c} x^2\right )^2}} F\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{c} x}{\sqrt [4]{a}}\right )|\frac {1}{4} \left (2-\frac {b}{\sqrt {a} \sqrt {c}}\right )\right )}{10 c^{3/4} \sqrt {a+b x^2+c x^4}} \\ \end{align*}

Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 10.80 (sec) , antiderivative size = 505, normalized size of antiderivative = 1.40 \[ \int \frac {\left (a+b x^2+c x^4\right )^{3/2}}{x^2} \, dx=\frac {4 c \sqrt {\frac {c}{b+\sqrt {b^2-4 a c}}} \left (-5 a^2-3 a b x^2+2 b^2 x^4-4 a c x^4+3 b c x^6+c^2 x^8\right )+i \left (b^2+12 a c\right ) \left (-b+\sqrt {b^2-4 a c}\right ) x \sqrt {\frac {b+\sqrt {b^2-4 a c}+2 c x^2}{b+\sqrt {b^2-4 a c}}} \sqrt {\frac {2 b-2 \sqrt {b^2-4 a c}+4 c x^2}{b-\sqrt {b^2-4 a c}}} E\left (i \text {arcsinh}\left (\sqrt {2} \sqrt {\frac {c}{b+\sqrt {b^2-4 a c}}} x\right )|\frac {b+\sqrt {b^2-4 a c}}{b-\sqrt {b^2-4 a c}}\right )-i \left (-b^3+4 a b c+b^2 \sqrt {b^2-4 a c}+12 a c \sqrt {b^2-4 a c}\right ) x \sqrt {\frac {b+\sqrt {b^2-4 a c}+2 c x^2}{b+\sqrt {b^2-4 a c}}} \sqrt {\frac {2 b-2 \sqrt {b^2-4 a c}+4 c x^2}{b-\sqrt {b^2-4 a c}}} \operatorname {EllipticF}\left (i \text {arcsinh}\left (\sqrt {2} \sqrt {\frac {c}{b+\sqrt {b^2-4 a c}}} x\right ),\frac {b+\sqrt {b^2-4 a c}}{b-\sqrt {b^2-4 a c}}\right )}{20 c \sqrt {\frac {c}{b+\sqrt {b^2-4 a c}}} x \sqrt {a+b x^2+c x^4}} \]

[In]

Integrate[(a + b*x^2 + c*x^4)^(3/2)/x^2,x]

[Out]

(4*c*Sqrt[c/(b + Sqrt[b^2 - 4*a*c])]*(-5*a^2 - 3*a*b*x^2 + 2*b^2*x^4 - 4*a*c*x^4 + 3*b*c*x^6 + c^2*x^8) + I*(b
^2 + 12*a*c)*(-b + Sqrt[b^2 - 4*a*c])*x*Sqrt[(b + Sqrt[b^2 - 4*a*c] + 2*c*x^2)/(b + Sqrt[b^2 - 4*a*c])]*Sqrt[(
2*b - 2*Sqrt[b^2 - 4*a*c] + 4*c*x^2)/(b - Sqrt[b^2 - 4*a*c])]*EllipticE[I*ArcSinh[Sqrt[2]*Sqrt[c/(b + Sqrt[b^2
 - 4*a*c])]*x], (b + Sqrt[b^2 - 4*a*c])/(b - Sqrt[b^2 - 4*a*c])] - I*(-b^3 + 4*a*b*c + b^2*Sqrt[b^2 - 4*a*c] +
 12*a*c*Sqrt[b^2 - 4*a*c])*x*Sqrt[(b + Sqrt[b^2 - 4*a*c] + 2*c*x^2)/(b + Sqrt[b^2 - 4*a*c])]*Sqrt[(2*b - 2*Sqr
t[b^2 - 4*a*c] + 4*c*x^2)/(b - Sqrt[b^2 - 4*a*c])]*EllipticF[I*ArcSinh[Sqrt[2]*Sqrt[c/(b + Sqrt[b^2 - 4*a*c])]
*x], (b + Sqrt[b^2 - 4*a*c])/(b - Sqrt[b^2 - 4*a*c])])/(20*c*Sqrt[c/(b + Sqrt[b^2 - 4*a*c])]*x*Sqrt[a + b*x^2
+ c*x^4])

Maple [A] (verified)

Time = 1.28 (sec) , antiderivative size = 405, normalized size of antiderivative = 1.12

method result size
risch \(-\frac {\sqrt {c \,x^{4}+b \,x^{2}+a}\, \left (-c \,x^{4}-2 b \,x^{2}+5 a \right )}{5 x}+\frac {2 a b \sqrt {2}\, \sqrt {4-\frac {2 \left (-b +\sqrt {-4 a c +b^{2}}\right ) x^{2}}{a}}\, \sqrt {4+\frac {2 \left (b +\sqrt {-4 a c +b^{2}}\right ) x^{2}}{a}}\, F\left (\frac {x \sqrt {2}\, \sqrt {\frac {-b +\sqrt {-4 a c +b^{2}}}{a}}}{2}, \frac {\sqrt {-4+\frac {2 b \left (b +\sqrt {-4 a c +b^{2}}\right )}{a c}}}{2}\right )}{5 \sqrt {\frac {-b +\sqrt {-4 a c +b^{2}}}{a}}\, \sqrt {c \,x^{4}+b \,x^{2}+a}}-\frac {\left (12 a c +b^{2}\right ) a \sqrt {2}\, \sqrt {4-\frac {2 \left (-b +\sqrt {-4 a c +b^{2}}\right ) x^{2}}{a}}\, \sqrt {4+\frac {2 \left (b +\sqrt {-4 a c +b^{2}}\right ) x^{2}}{a}}\, \left (F\left (\frac {x \sqrt {2}\, \sqrt {\frac {-b +\sqrt {-4 a c +b^{2}}}{a}}}{2}, \frac {\sqrt {-4+\frac {2 b \left (b +\sqrt {-4 a c +b^{2}}\right )}{a c}}}{2}\right )-E\left (\frac {x \sqrt {2}\, \sqrt {\frac {-b +\sqrt {-4 a c +b^{2}}}{a}}}{2}, \frac {\sqrt {-4+\frac {2 b \left (b +\sqrt {-4 a c +b^{2}}\right )}{a c}}}{2}\right )\right )}{10 \sqrt {\frac {-b +\sqrt {-4 a c +b^{2}}}{a}}\, \sqrt {c \,x^{4}+b \,x^{2}+a}\, \left (b +\sqrt {-4 a c +b^{2}}\right )}\) \(405\)
default \(-\frac {a \sqrt {c \,x^{4}+b \,x^{2}+a}}{x}+\frac {c \,x^{3} \sqrt {c \,x^{4}+b \,x^{2}+a}}{5}+\frac {2 b x \sqrt {c \,x^{4}+b \,x^{2}+a}}{5}+\frac {2 a b \sqrt {2}\, \sqrt {4-\frac {2 \left (-b +\sqrt {-4 a c +b^{2}}\right ) x^{2}}{a}}\, \sqrt {4+\frac {2 \left (b +\sqrt {-4 a c +b^{2}}\right ) x^{2}}{a}}\, F\left (\frac {x \sqrt {2}\, \sqrt {\frac {-b +\sqrt {-4 a c +b^{2}}}{a}}}{2}, \frac {\sqrt {-4+\frac {2 b \left (b +\sqrt {-4 a c +b^{2}}\right )}{a c}}}{2}\right )}{5 \sqrt {\frac {-b +\sqrt {-4 a c +b^{2}}}{a}}\, \sqrt {c \,x^{4}+b \,x^{2}+a}}-\frac {\left (\frac {12 a c}{5}+\frac {b^{2}}{5}\right ) a \sqrt {2}\, \sqrt {4-\frac {2 \left (-b +\sqrt {-4 a c +b^{2}}\right ) x^{2}}{a}}\, \sqrt {4+\frac {2 \left (b +\sqrt {-4 a c +b^{2}}\right ) x^{2}}{a}}\, \left (F\left (\frac {x \sqrt {2}\, \sqrt {\frac {-b +\sqrt {-4 a c +b^{2}}}{a}}}{2}, \frac {\sqrt {-4+\frac {2 b \left (b +\sqrt {-4 a c +b^{2}}\right )}{a c}}}{2}\right )-E\left (\frac {x \sqrt {2}\, \sqrt {\frac {-b +\sqrt {-4 a c +b^{2}}}{a}}}{2}, \frac {\sqrt {-4+\frac {2 b \left (b +\sqrt {-4 a c +b^{2}}\right )}{a c}}}{2}\right )\right )}{2 \sqrt {\frac {-b +\sqrt {-4 a c +b^{2}}}{a}}\, \sqrt {c \,x^{4}+b \,x^{2}+a}\, \left (b +\sqrt {-4 a c +b^{2}}\right )}\) \(430\)
elliptic \(-\frac {a \sqrt {c \,x^{4}+b \,x^{2}+a}}{x}+\frac {c \,x^{3} \sqrt {c \,x^{4}+b \,x^{2}+a}}{5}+\frac {2 b x \sqrt {c \,x^{4}+b \,x^{2}+a}}{5}+\frac {2 a b \sqrt {2}\, \sqrt {4-\frac {2 \left (-b +\sqrt {-4 a c +b^{2}}\right ) x^{2}}{a}}\, \sqrt {4+\frac {2 \left (b +\sqrt {-4 a c +b^{2}}\right ) x^{2}}{a}}\, F\left (\frac {x \sqrt {2}\, \sqrt {\frac {-b +\sqrt {-4 a c +b^{2}}}{a}}}{2}, \frac {\sqrt {-4+\frac {2 b \left (b +\sqrt {-4 a c +b^{2}}\right )}{a c}}}{2}\right )}{5 \sqrt {\frac {-b +\sqrt {-4 a c +b^{2}}}{a}}\, \sqrt {c \,x^{4}+b \,x^{2}+a}}-\frac {\left (\frac {12 a c}{5}+\frac {b^{2}}{5}\right ) a \sqrt {2}\, \sqrt {4-\frac {2 \left (-b +\sqrt {-4 a c +b^{2}}\right ) x^{2}}{a}}\, \sqrt {4+\frac {2 \left (b +\sqrt {-4 a c +b^{2}}\right ) x^{2}}{a}}\, \left (F\left (\frac {x \sqrt {2}\, \sqrt {\frac {-b +\sqrt {-4 a c +b^{2}}}{a}}}{2}, \frac {\sqrt {-4+\frac {2 b \left (b +\sqrt {-4 a c +b^{2}}\right )}{a c}}}{2}\right )-E\left (\frac {x \sqrt {2}\, \sqrt {\frac {-b +\sqrt {-4 a c +b^{2}}}{a}}}{2}, \frac {\sqrt {-4+\frac {2 b \left (b +\sqrt {-4 a c +b^{2}}\right )}{a c}}}{2}\right )\right )}{2 \sqrt {\frac {-b +\sqrt {-4 a c +b^{2}}}{a}}\, \sqrt {c \,x^{4}+b \,x^{2}+a}\, \left (b +\sqrt {-4 a c +b^{2}}\right )}\) \(430\)

[In]

int((c*x^4+b*x^2+a)^(3/2)/x^2,x,method=_RETURNVERBOSE)

[Out]

-1/5*(c*x^4+b*x^2+a)^(1/2)*(-c*x^4-2*b*x^2+5*a)/x+2/5*a*b*2^(1/2)/((-b+(-4*a*c+b^2)^(1/2))/a)^(1/2)*(4-2*(-b+(
-4*a*c+b^2)^(1/2))/a*x^2)^(1/2)*(4+2*(b+(-4*a*c+b^2)^(1/2))/a*x^2)^(1/2)/(c*x^4+b*x^2+a)^(1/2)*EllipticF(1/2*x
*2^(1/2)*((-b+(-4*a*c+b^2)^(1/2))/a)^(1/2),1/2*(-4+2*b*(b+(-4*a*c+b^2)^(1/2))/a/c)^(1/2))-1/10*(12*a*c+b^2)*a*
2^(1/2)/((-b+(-4*a*c+b^2)^(1/2))/a)^(1/2)*(4-2*(-b+(-4*a*c+b^2)^(1/2))/a*x^2)^(1/2)*(4+2*(b+(-4*a*c+b^2)^(1/2)
)/a*x^2)^(1/2)/(c*x^4+b*x^2+a)^(1/2)/(b+(-4*a*c+b^2)^(1/2))*(EllipticF(1/2*x*2^(1/2)*((-b+(-4*a*c+b^2)^(1/2))/
a)^(1/2),1/2*(-4+2*b*(b+(-4*a*c+b^2)^(1/2))/a/c)^(1/2))-EllipticE(1/2*x*2^(1/2)*((-b+(-4*a*c+b^2)^(1/2))/a)^(1
/2),1/2*(-4+2*b*(b+(-4*a*c+b^2)^(1/2))/a/c)^(1/2)))

Fricas [F]

\[ \int \frac {\left (a+b x^2+c x^4\right )^{3/2}}{x^2} \, dx=\int { \frac {{\left (c x^{4} + b x^{2} + a\right )}^{\frac {3}{2}}}{x^{2}} \,d x } \]

[In]

integrate((c*x^4+b*x^2+a)^(3/2)/x^2,x, algorithm="fricas")

[Out]

integral((c*x^4 + b*x^2 + a)^(3/2)/x^2, x)

Sympy [F]

\[ \int \frac {\left (a+b x^2+c x^4\right )^{3/2}}{x^2} \, dx=\int \frac {\left (a + b x^{2} + c x^{4}\right )^{\frac {3}{2}}}{x^{2}}\, dx \]

[In]

integrate((c*x**4+b*x**2+a)**(3/2)/x**2,x)

[Out]

Integral((a + b*x**2 + c*x**4)**(3/2)/x**2, x)

Maxima [F]

\[ \int \frac {\left (a+b x^2+c x^4\right )^{3/2}}{x^2} \, dx=\int { \frac {{\left (c x^{4} + b x^{2} + a\right )}^{\frac {3}{2}}}{x^{2}} \,d x } \]

[In]

integrate((c*x^4+b*x^2+a)^(3/2)/x^2,x, algorithm="maxima")

[Out]

integrate((c*x^4 + b*x^2 + a)^(3/2)/x^2, x)

Giac [F]

\[ \int \frac {\left (a+b x^2+c x^4\right )^{3/2}}{x^2} \, dx=\int { \frac {{\left (c x^{4} + b x^{2} + a\right )}^{\frac {3}{2}}}{x^{2}} \,d x } \]

[In]

integrate((c*x^4+b*x^2+a)^(3/2)/x^2,x, algorithm="giac")

[Out]

integrate((c*x^4 + b*x^2 + a)^(3/2)/x^2, x)

Mupad [F(-1)]

Timed out. \[ \int \frac {\left (a+b x^2+c x^4\right )^{3/2}}{x^2} \, dx=\int \frac {{\left (c\,x^4+b\,x^2+a\right )}^{3/2}}{x^2} \,d x \]

[In]

int((a + b*x^2 + c*x^4)^(3/2)/x^2,x)

[Out]

int((a + b*x^2 + c*x^4)^(3/2)/x^2, x)